
Identify Orthologies in Genomes

Orthologs and Paralogs

Some Facts About Orthologs

Some Facts About Orthologs

Pairwise Aligner — LASTZ

Scoring Inference

Indexing Seed Words

Seeding

Gap-free Extension

HSP Chaining

Gapped Extension

Back-end Filtering

Interpolation

A Brief Overview

Scoring Inference

substitution

gap open gap extension

Infer the score by computing the probability of different alignment
events estimated from alignments.

Optimization starts from a generic scoring set to create alignments.

match

Indexing Seed Words

ATCGATCGGGGGCTk=10

kmer position

ATCGATCGGG 1

CGATCGGGGG 3

ATCGGGGGCT 5

step size=2

Parses the target sequence(s) into overlapping seed words of some
constant length, then word and position pairs are collected into a table,
both for query and target

Seeding

kmer position

ATCGATCGGG 1

CGATCGGGGG 3

ATCGGGGGCT 5

kmer position

ATCGGGGGCT 8

CGGGGGCTTC 10

GGGGCTTCAA 12

Query Seed Table

Target1 Seed Table

kmer position

ATACGGGGCT 8

CGGGGGCTTC 10

GGGGCTTCAA 12

Target2 Seed Table

Find seeds exact or near match
between target and query sequences

Gap-free Extension

Each seed is extended along diagonal in both direction without allowing gaps to
determine whether it is part of a high-scoring segment pair (HSP).

They extends following extension rules, currently either exact match, M-mismatch,
or x-drop.

Before Gap-free Extension After Gap-free Extension

X-drop

CAGCGGGCACATCGG
CAGCGGGCACTAGCC

match=1
mismatch=-1
x=3

10 7

X-drop

CAGCGGGCACATC
CAGCGGGCACTAG

match=1
mismatch=-1
x=3

10 7

HSP Chaining

The chaining stage finds the highest scoring series of HSPs in which each HSP
begins strictly before the start of the next. It’s primary intend for HSPs in the same
relative order and orientation in the query as in the target

Before HSP Chaining After HSP Chaining

Gapped Extension

Each HSP is first reduced to a single anchor point, then gapped extension is
performed independently in both directions from the anchor point

Before Gapped Extension After Gapped Extension

Back-end Filtering

Whatever alignment blocks have made it through the above gauntlet are then
subjected to identity, continuity, coverage and match count filtering. Blocks
that do not meet the specified range for each feature are discarded.

Interpolation

Using high sensitivity to run another complete alignment round (seeding, gap-
free extension, chaining, gapped extension and back-end filtering)

BLAST vs LASTZ

Discontiguous
Mega BLAST LASTZ

Remove Low Complexity
and Repeats DUST Repeat Masker

Scoring Inference Fixed Score Iterative Inference/HOXD70

Seeding Spaced Seeds Spaced Seeds

Gap-free Extension — x-drop

Chaining — ✓

Gapped Extension y-drop y-drop

Evaluation E-value Back-end Filtering

Interpolation — ✓

Implementation Time

LASTZ supports Macintosh OS X, Unix and Linux platforms

LASTZ is written in C and compiled with gcc (4.8.5 on my Macbook)

Image of Dotplot output can be generated by R and R studio

Platform, Compiler and Other Software Required

Installation

tar -zxvf lastz-1.02.00.tar.gz

cd <somepath>/lastz-1.02.00.tar.gz/src

make

make install

Add lastz to $PATH

Common Input Files

Query and target files in Fasta format

Common Output Files Format

Maf Format Output R Dotplot

Maf Format

Comments
Alignments are
separated by
empty line

Maf Format

Except the maf version,
other comments
depends on software

“a” indicates the
start of the block
followed by
alignment score

“s” indicates
the start of the
sequence
followed by
sequence ID Start Position, Length, Strand Orientation and End Position delimited by space

Command Line Syntax

lastz <target> [<query>] [<options>]

lastz target.fas[multiple] query.fas \
 --format=maf > alignment.maf

Try LASTZ on Gene Enrichment Data

Multiple Sequences Aligner — Mauve & ProgressiveMauve

Use the multi-MUMs to calculate a phylogenetic guide tree

Find local alignments (multi-MUMs).

Perform a progressive alignment of each LCB using the guide tree

Select a subset of the multi-MUM to use as anchors, then
partitioned into collinear groups call LCBs

Perform recursive anchoring to identify additional alignment
anchors within and outside each LCBs

A Brief Overview of Mauve

Find local alignments (multi-MUMs)

Seeding (Exact match seed) Gap-free Extension

Calculating a Guide Tree

Gap-free multi-MUMs
coverage

Neighbor Joining

Guide Tree

Partition Subset of the Multi-MUM into Locally Collinear
Blocks LCBs

Determine a partitioning of Multi-MUM into collinear blocks

Calculate the weight of each collinear block

Stop if collinear block with minimum weight got the Weight
greater than threshold

Identify the collinear subsets which minimum weight is equal
or greater than threshold

Remove the Multi-MUMs in identified subset from original
Multi-MUM set

Delete spurious matches according to weight (length)

Recursive Anchoring

Inside LCBOutside LCB

Do recursive anchoring with higher sensitivity

Gapped Alignment

Generate progressive alignments for each of LCBs by Clustalw with single
guide tree constructed before

A Brief Overview of ProgressiveMauve

Use the multi-MUMs to calculate a phylogenetic guide tree

Find multi-MUMs (or LMA) (Spaced Seeds)

Select a subset of the multi-MUM to use as anchors, then
partitioned into collinear groups call LCBs (sum-of-pairs
breakpoint score instead of weight)

Perform recursive anchoring to identify additional alignment
anchors within and outside each LCBs

Perform profile-profile alignment of each LCB using guide tree
(MUSCLE instead of Clustalw)

Rejecting alignments of unrelated sequences with a homology HMM

These steps
are executed
in pairwise

according to
guide tree

Sum-of-pairs Breakpoint Score

Number of LCBsSeparation penalty
Sum of scores of all LMAs
in LCBs calculated based

on HODX70

High sum of pair score means longer and more LMAs in LCBs
with fewer breakpoints

Rejecting Alignments of Unrelated Sequences with a
Homology HMM

Sequences here may be unrelated

Strength in Progressive Mauve

Large region of shared by subset genomes can be aligned
(LCBs are pair wisely identified)

Works better on more divergent genomes (Spaced Seeds)

More Accurate (Sum of pair breakpoint score, alignment refinement
and back-end filtering)

Applied to a much larger number of genomes (Faster greedy
algorithm in LCB identification)

Manual adjustment of the alignment scoring parameters is usually
not necessary

Implementation Time

Platform, Compiler and Other Software Required

Mauve supports Windows, Linux and Mac OS X systems

Java 1.4 is required, while it has been already installed for most of the
system (i.e Mac OS X, Fedora, Red Hat etc.)

The Windows version of Mauve includes the Java installer for 32-bit
windows systems, while ther systems Java may need to be installed
separately.

Installation

Mauve provide easy-to-install installation package for Windows, Linux and Mac OS
X systems.

Other Unix-like operating systems, you can build from source.

Common Input Files

Fasta format Genbank format

Genbank format

Lots of
description

Sequence

“//” separate
the block

Common Output Files Format

XMFA format

Backbone are regions in the correct alignment containing >50 gap-free
columns without stretches of 50 or more consecutive gaps in any single
genome sequence.

Common Output Files Format

bbcols files contain all backbone entries

Basic Pipeline

progressiveMauve --output=full_alignment.xmfa genome1.fas genome2.fas
genome3.fas genome4.fas

stripSubsetLCBs full_alignment.xmfa full_alignment.xmfa.bbcols
filtered_full_alignment.xmfa length number_of_seq

1. Generate genomic multiple alignment:

2. Select conserved backbone alignment:

Following the introduction of bioperl

